Water Stewardship Information Sources

Resource Name Atmospheric and soil moisture controls on evapotranspiration from above and within a Western Boreal Plain aspen forest. Hydrological Processes.
Unique File Number 315
Information Type applied research
Surface Water A
Aquatic Ecosystem
Groundwater
Groundwater & Surface Water
Management for Natural & Industrial Hazards
Strengths Provides evaporation measurements for aspen forest and understory. Demonstrate strong control of VPD and soil moisture content on ET. Suggest water redistribution by aspen roots (clonal species) can be a strong control on soil moisture.
Limitations 2 years data
Challenges
Outstanding Research Questions
Outstanding Research Questions
Information Subtype boreal hydrology
Organization University of Alberta
Resource Name Brown, SM, Petrone RM, Chasmer L, Mendoza C, Lazerjan MS, Landhausser SM, Silins U, Leach J, Devito KJ. 2013. Atmospheric and soil moisture controls on evapotranspiration from above and within a Western Boreal Plain aspen forest. Hydrological Processes. (DOI:10.1002/hyp.9879)
Resource Purpose The Western Boreal Plain of North Central Alberta comprises a mosaic of wetlands and aspen (Populus tremuloides) dominated uplands where precipitation (P) is normally exceeded by evapotranspiration (ET). As such these systems are highly susceptible to the climatic variability that may upset the balance between P and ET. Above canopy evapotranspiration (ETC) and understory evapotranspiration (ETB) were examined using the eddy covariance technique situated at 25.5 m (7.5 m above tree crown) and 4.0 m above the ground surface, respectively. During the peak period of the growing seasons (green periods), ETC averaged 3.08 mm d1 and 3.45 mm d1 in 2005 and 2006, respectively, while ETB averaged 1.56 mm d1 and 1.95 mm d1 . Early in the growing season, ETB was equal to or greater than ETC once understory development had occurred. However, upon tree crown growth, ETB was lessened due to a reduction in available energy. ETB ranged from 42 to 56% of ETC over the remainder of the snow-free seasons. Vapour pressure deficit (VPD) and soil moisture (y) displayed strong controls on both ETC and ETB. ETC responded to precipitation events as the developed tree crown intercepted and held available water which contributed to peak ETC following precipitation events >10 mm. While both ETC and ETB were shown to respond to VPD, soil moisture in the rooting zone is shown to be the strongest control regardless of atmospheric demand. Further, soil moisture and tension data suggest that rooting zone soil moisture is controlled by the redistribution of soil water by the aspen root system. Copyright ©2013 John Wiley & Sons, Ltd.
Type of Information article
How does this help decision making?
Program Status complete
NE Coverage boreal Plains
Drinking Water
Ecosystem
Fish
Groundwater
Public Safety
SW Quality
SW Quantity Y
Link http://scholar.ulethbridge.ca/sites/default/files/chasmer/files/hyp9879.pdf
Text Query
Google Earth
iMap Path Link
Spatial Metadata
Map
Contact Email [email protected]