Water Stewardship Information Sources

ID 1948
Citation Fleming, S. W. (2005), Comparative analysis of glacial and nival streamflow regimes with implications for lotic habitat quantity and fish species richness. River Research and Applications, 21: 363–379. doi:10.1002/rra.810
Organization University of British Columbia
URL http://onlinelibrary.wiley.com/doi/10.1002/rra.810/full
Abstract/Description or Keywords Growing interest in the differential responses of glacial and nival rivers to climatic forcing, and in ecological distinctions between the two streamflow regimes, suggests the need for a better comparative understanding of how the annual hydrologic cycle differs with presence or absence of catchment glacial cover. In this study, timing and magnitude characteristics of the average annual hydrographs of five glacierized and four nival catchments in the southwestern Canadian subarctic are empirically identified and compared. Likely effects upon fish habitat are qualitatively assessed, and net fisheries potential is tentatively investigated using taxa richness data. The chief hydrological conclusions at P_<_0.05 using Kolmogorov–Smirnov and empirical orthogonal function analyses are: (1) catchment glacial cover results in freshets that are longer, larger, and peak later than those experienced by the nival regime; (2) the winter baseflows of glacial rivers are also much higher on a unit-catchment-area basis; and (3) basin scale and degree of catchment glacial cover are of comparable importance in determining the magnitude of the annual hydrologic cycle. These differences arise from the greater availability, both in volume and over time, of meltwater in glacial catchments, which in part reflects the consistently negative alpine glacial mass balances observed both in the present study area and globally under historical climatic warming. Such regime distinctions result in increased spawning season and winter aquatic habitat availability, which may in turn offset negative habitat characteristics previously identified for glacial river ecosystems. While previous studies have suggested that glacial influences tend to decrease macroinvertebrate diversity and increase salmon populations, preliminary analysis of available fish species presence/absence data from the current study area tentatively appears to suggest similar or, perhaps, slightly higher fish taxa richness relative to nival streams; in all three cases, however, catchment lake cover may play a key hydroecological modifying role. The results strongly confirm and extend existing understanding of glacial–nival regime differences with respect to both streamflow and fisheries ecology, and raise new questions for future research.
Information Type Article
Regional Watershed
Sub-watershed if known
Aquifer #
Comments
Project status
Contact Name
Contact Email